TECHNICAL NOTES AND SHORT PAPERS

An Extension of the Table of the Toronto Function

By A. H. Heatley

1. Introduction. Twenty years ago I published [4] a very short five-decimal table of the confluent hypergeometric function, M:

(1)
$$M(\alpha,\gamma,x) = 1 + \frac{\alpha}{\gamma} \frac{x}{1!} + \frac{\alpha(\alpha+1)}{\gamma(\gamma+1)} \frac{x^2}{2!} + \cdots,$$

and a short table of the Toronto function, T, which is defined in terms of the M-function:

$$T(m,n,r) = r^{2n-m+1}e^{-r^2}\Gamma\left(\frac{m+1}{2}\right)M\left(\frac{m+1}{2}, n+1, r^2\right)/\Gamma(n+1).$$

Using an IBM 1620 computer the table of the M-function has been extended, for the same parameters as before, from x = 4 to x = 16 (Table I), and certain gaps in the 1943 table of the T-function have been filled (Table II). The latter function has also been computed for those values of m and n of interest to Wagner [10] and to Carlson [2, Section 3, Tables III and IV]. All these computations were carried to at least twelve significant figures. Values of the function for the new parameters are tabulated to eight significant figures to anticipate other uses.

My former or present tables appear not to include any values published in existing tables of the *M*-function, except eight values by MacDonald [6], and four values by the Numerical Computation Bureau of Tokyo [8] in their table of the Whittaker function $M_{k,m}(x)$, related to the *M*-function of this paper by the equation

(3)
$$M_{k,m}(x) = x^{m+(1/2)} e^{-x/2} M(m + \frac{1}{2} - k, 2m + 1, x).$$

2. Interpolation of M. The function $e^{-x}M(\alpha, \gamma, x)$ tabulated in Table I is more suitable for tabulation for these values of α and γ , with x = 0 to x = 16, than $M(\alpha, \gamma, x)$ itself, but the range of values is still greater than is desirable for interpolation. The function $e^{-\alpha x/\gamma}M(\alpha, \gamma, x)$, proposed by MacDonald [7], is also more suitable than $M(\alpha, \gamma, x)$ throughout this region, but suffers from the same defect. Preliminary studies indicate that $e^{-\alpha x/\gamma}M(\alpha, \gamma, x)$ is more suitable than $e^{-x}M(\alpha, \gamma, x)$ at some values of the parameters and argument, and is less suitable at other values. For the function $M(n/2, \frac{1}{2}, x)$ Horenstein [5] found it desirable, for ease of interpolation, to tabulate different functions of M for different regions of n and x. The same device is probably desirable for regions other than those studied by Horenstein. The problem warrants further study.

Received February 10, 1964. Revised June 24, 1964.

¹ This is the notation of Airey [1, p. 276] and of Fletcher *et al.* [3, v. 1, p. 535]. Other notations are noted by Slater [9, p. 2].

values tabulated are $10^{p} \cdot e^{-M}(\alpha, \gamma, x)$.										
$x^{\alpha, \gamma}$	2.25, 3	p	1.25, 2	p	0.25, 1	p	0.25, 2	p	0.25, 3	p
$\begin{array}{r} 4.00\\ 4.84\\ 5.76\\ 6.76\\ 7.84\\ 9.00\\ 10.24\\ 11.56\\ 12.96\\ 14.44 \end{array}$	$\begin{array}{c} 4.89001\\ 4.42262\\ 4.01038\\ 3.64846\\ 3.33116\\ 3.05275\\ 2.80792\\ 2.59194\\ 2.40072\\ 2.23075 \end{array}$	1 1 1 1 1 1 1 1 1	$\begin{array}{c} 3.64968\\ 3.21500\\ 2.85188\\ 2.54787\\ 2.29192\\ 2.07484\\ 1.88925\\ 1.72932\\ 1.59045\\ 1.46903 \end{array}$	1 1 1 1 1 1 1 1 1	$\begin{array}{c} 1.27598\\ 1.03283\\ 8.62426\\ 7.38994\\ 6.45923\\ 5.73002\\ 5.14035\\ 4.65190\\ 4.23991\\ 3.88758\end{array}$	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ $	$\begin{array}{r} 4.84744\\ 3.05444\\ 1.99274\\ 1.36034\\ 9.72571\\ 7.23899\\ 5.56307\\ 4.38133\\ 3.51696\\ 2.86663\end{array}$	2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 3.27926\\ 1.77322\\ 9.61643\\ 5.35303\\ 3.11705\\ 1.91615\\ 1.24167\\ 8.41375\\ 5.90626\\ 4.26196\end{array}$	$2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4$
16.00	2.07909	1	1.36217	1	3.58292	2	2.36652	3	3.14399	4
χ α, γ	2.75, 3	p	1.75, 2	p	0.75, 1	p	0.75, 2	p	0.75, 3	p
4.00	7.95044	1	7.31570	1	5.87944	1	1.57066	1	7.89533	2
4.84	7.70287	1	7.04009	1	5.58770	1	1.23054	1	5.28481	2
5.76	7.46873	1	6.78720	1	5.33537	1	9.79899	2	3.57985	2
0.70	7 04915	1	0.00000	1	5.11510	1	6 52400	2 9	2.4/140	2
0.00	6 84808	1	6 14840	1	4.92004	1	5 45750	2 2	1.74000	2
9.00 10.24	6 66827	1	5 96920	1	4 50232	1	4 61657	$\frac{2}{2}$	9 32367	3
11.56	6.49915	î	5.80373	1	4.45151	1	3.94850	$\overline{2}$	7.02845	3
12.96	6.34072	1	5.65056	ĩ	4.32316	ī	3.40968	$\overline{2}$	5.39205	ž
14.44	6.19213	1	5.50834	ĩ	4.20549	1	2.96932	2	4.20102	3
16.00	6.05255	1	5.37591	1	4.09706	1	2.60521	2	3.31802	3

TABLE I The Confluent Hypergeometric Function Values tabulated are $10^{p} \cdot e^{-x} M(\alpha, \gamma, x)$.

3. Applications of T. One example of the Toronto function has appeared in a study by Wagner on the theory of turbulence and the frequency distribution of wind strength and direction. I have recomputed the two functions tabulated by Wagner to four significant figures [10, p. 399, 400]. Up to r = 4.0 the T-function was computed from the M-function; from r = 3.0 to r = 5.0, from the asymptotic series derived from equation (42) [4]. At and above r = 3.3 the asymptotic series agrees to eight significant figures with the result from the M-function.

The results are reported in Table III. Note that

(4)
$$2r\pi^{-1/2}T(2,0,r) = e^{-r^2}M(\frac{3}{2},1,r^2).$$

For r equal to or greater than 3.0 the asymptotic series gives T to six significant figures with five terms or less.

The report on these functions of Wagner by Fletcher *et al.* [3, v. 1, p. 480] is in error by a factor of two.

In studies on the potential of an ellipsoidal charge distribution, Carlson [2] has used the group of Toronto functions $T(2n + 1, 2n + \frac{1}{2}, r)$, where $n = 0, 1, 2, \cdots$; he did not tabulate numerical values. I have computed these functions using the

values tabulated are 10^{-1} (<i>m</i> , <i>n</i> , <i>t</i>).										
r m, n	-0.5, -2	p	-0.5, -1	p	-0.5,0	p	-0.5, 1	p	-0.5, 2	p
2.0 2.2 2.4 2.6 2.8 3.0 3.2	7.83531 8.17550 8.44702 8.66504 8.84164 8.98616 9.10565	1 1 1 1 1 1 1	9.35667 9.50902 9.61101 9.68186 9.73325 9.77209 9.80247 0.80247	1 1 1 1 1 1 1	$\begin{array}{c} 1.30849\\ 1.22193\\ 1.16257\\ 1.12326\\ 1.09723\\ 1.07949\\ 1.06684\\ 1.05728\end{array}$	0 0 0 0 0 0 0 0	$\begin{array}{c} 1.98838\\ 1.74901\\ 1.54729\\ 1.39777\\ 1.29526\\ 1.22739\\ 1.18228\\ 1.18228\\ 1.18228\end{array}$	0 0 0 0 0 0 0 0	$\begin{array}{r} 2.69024\\ 2.45719\\ 2.15044\\ 1.85911\\ 1.62729\\ 1.46200\\ 1.35108\\ 1.97784\end{array}$	0 0 0 0 0 0 0 0
$3.4 \\ 3.6 \\ 3.8 \\ 4.0$	9.20545 9.28958 9.36113 9.42246	1 1 1 1	9.82085 9.84682 9.86343 9.87742	1 1 1	$\begin{array}{c} 1.05738 \\ 1.05000 \\ 1.04408 \\ 1.03922 \end{array}$	0 0 0 0	$\begin{array}{c} 1.13123 \\ 1.12878 \\ 1.11172 \\ 1.09825 \end{array}$	0 0 0 0	$\begin{array}{c} 1.27784 \\ 1.22836 \\ 1.19336 \\ 1.16725 \end{array}$	0 0 0 0
r m, n	0.5, -2	p	0.5, -1	p	0.5, 0	р	0.5,1 į)	0.5, 2 1	p
2.02.22.42.62.83.03.23.43.63.84.0	$\begin{array}{c} 9.04190\\ 9.18791\\ 9.30477\\ 9.39920\\ 9.47627\\ 9.53981\\ 9.59271\\ 9.63716\\ 9.67483\\ 9.70700\\ 9.73467\end{array}$	1 1 1 1 1 1 1 1 1 1 1	9.50859 9.59698 9.66365 9.71498 9.75530 9.78756 9.81378 9.83539 9.85343 9.86864 9.88159	1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 1.01891\\ 1.01561\\ 1.01287\\ 1.01071\\ 1.00903\\ 1.00771\\ 1.00668\\ 1.00584\\ 1.00516\\ 1.00460\\ 1.00412 \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 1.08878\\ 1.08252\\ 1.07150\\ 1.06020\\ 1.05041\\ 1.04251\\ 1.03628\\ 1.03137\\ 1.02743\\ 1.02423\\ 1.02423\\ 1.02159\end{array}$	0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 1.09461\\ 1.12509\\ 1.12738\\ 1.11580\\ 1.09988\\ 1.08454\\ 1.07156\\ 1.06113\\ 1.05286\\ 1.04625\\ 1.04089 \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0

TABLE II The Toronto Function Values tabulated are $10^{p} \cdot T(m, n, r)$.

r	$2r\pi^{-1/2} T(2,0,r)$	T(2, 0, r)	r	$2r\pi^{-1/2} T(2,0,r)$	T(2, 0, r)			
0.0	1.000 0000	infinity	2.5	2.936 4376	1.040 9400			
.1	1.004 9938	$8.906\ 5253$	2.6	3.044 6035	1.037 7729			
.2	1.019 9007	$4.519 \ 3171$	2.7	3.153 1460	1.034 9640			
.3	1.044 5012	3.085 5504	2.8	$3.262 \ 0195$	$1.032\ 4605$			
.4	1.078 4416	2.389 3600	2.9	$3.371 \ 1857$	1.030 2191			
.5	$1.121 \ 2504$	$1.987 \ 3645$	3.0	$3.480 \ 6122$	$1.028\ 2041$			
.6	1.172 3600	1.731 6283	3.1	$3.590\ 2714$	$1.026\ 3855$			
.7	$1.231 \ 1315$	1.558'6598	3.2	3.700 1397	$1.024 \ 7386$			
.8	1.296 8802	$1.436 \ 6627$	3.3	3.810 1965	$1.023\ 2420$			
.9	1.368 9010	$1.347 \ 9522$	3.4	3.920 4240	1.021 8780			
1.0	1.446 4913	1.281 9196	3.5^{-1}	4.030 8067	$1.020\ 6313$			
1.1	1.528 9710	$1.231 \ 8321$	3.6	4.141 3309	$1.019\ 4886$			
1.2	1.615 6983	$1.193\ 2294$	3.7	$4.251 \ 9845$	$1.018\ 4387$			
1.3	1.706 0811	$1.163 \ 0577$	3.8	4.362 7567	$1.017\ 4717$			
1.4	$1.799\ 5845$	$1.139\ 1716$	3.9	$4.473 \ 6382$	$1.016\ 5791$			
1.5	1.895 7339	$1.120\ 0336$	4.0	$4.584 \ 6202$	$1.015\ 7535$			
1.6	1.994 1154	$1.104\ 5242$	4.1	4.695 6952	$1.014 \ 9882$			
1.7	$2.094 \ 3730$	$1.091 \ 8175$	4.2	4.806 8562	$1.014\ 2775$			
1.8	$2.196\ 2048$	$1.081 \ 2977$	4.3	4.918 0971	$1.013\ 6163$			
1.9	$2.299\ 3571$	1.072 5011	4.4	$5.029 \ 4123$	$1.013\ 0001$			
2.0	$2.403 \ 6188$	$1.065 \ 0758$	4.5	5.1407965	$1.012\ 4250$			
2.1	2.508 8154	$1.058\ 7523$	4.6	5.252 2453	$1.011 \ 8872$			
2.2	2.614 8035	$1.053\ 3224$	4.7	5.3637543	$1.011 \ 3837$			
2.3	$2.721 \ 4649$	$1.048\ 6241$	4.8	5.475 3198	1.010 9116			
2.4	2.828 7028	1.044 5302	4.9	5.586 9380	$1.010\ 4684$			
2.5	2.936 4376	1.040 9400	5.0	5.698 6059	1.010 0516			

TABLE IIIThe Toronto Function

TABLE IV The Toronto Function Values tabulated are $10^{p} \cdot T(m, n, r)$.

r m, n	3.0,2.5 p	5.0, 4.5 p	7.0,6.5 p	9.0,8.5 p
0.0	0.000 0000 0	0.000 0000 0	0.000 0000 0	0.000 0000 0
.1	$2.996\ 1511\ 4$	$3.803 \ 6451 \ 7$	$3.191 \ 4818 \ 10$	$2.002 \ 3573 \ 13$
.2	$2.366 \ 3971 \ 3$	$1.200\ 7157\ 5$	$4.028 \ 3922 \ 8$	$1.010\ 7592\ 10$
.3	7.818 6499 3	$8.914\ 1503\ 5$	$6.724\ 7839\ 7$	$3.795 \ 0423 \ 9$
.4	$1.799 \ 3897 \ 2$	$3.639 \ 9874 \ 4$	$4.877 \ 2352 \ 6$	4.890 5211 8
.5	3.384 8348 2	$1.067 \ 0583 \ 3$	$2.231 \ 1957 \ 5$	3.493 1774 7
.6	$5.589\ 7625\ 2$	2.528 9086 3	$7.602\ 1812\ 5$	1.712 2542 6
.7	8.420 2852 2	$5.163\ 1412\ 3$	$2.108 \ 2333 \ 4$	$6.455\ 2692\ 6$
.8	1.184 0018 1	9.433 1136 3	5.018 0406 4	2.003 8039 5
.9	$1.577 \ 6655 \ 1$	$1.580 \ 8026 \ 2$	$1.060 \ 9743 \ 3$	$5.352\ 0630\ 5$
1.0	$2.013\ 1085\ 1$	2.471 5250 2	$2.040\ 1761\ 3$	1.267 6960 4
1.1	$2.478\ 7758\ 1$	$3.649\ 6037\ 2$	3.628 8902 3	$2.720 \ 9695 \ 4$
1.2	2.962 5068 1	$5.137\ 0673\ 2$	$6.046 \ 4510 \ 3$	$5.377 \ 9734 \ 4$
1.3	$3.452 \ 4680 \ 1$	$6.941\ 7213\ 2$	$9.529\ 1883\ 3$	$9.909\ 1249\ 4$
1.4	$3.937 \ 9017 \ 1$	$9.056\ 5524\ 2$	$1.431 \ 3918 \ 2$	1.718 5458 3
1.5	$4.409\ 6534\ 1$	$1.146\ 0602\ 1$	$2.061 \ 9839 \ 2$	$2.827 \ 1915 \ 3$
1.6	4.860 4649 1	$1.412\ 1050\ 1$	$2.863\ 1124\ 2$	$4.439\ 8083\ 3$
1.7	$5.285\ 0584\ 1$	$1.699\ 6139\ 1$	$3.848 \ 2324 \ 2$	$6.690\ 7063\ 3$
1.8	$5.680\ 0467\ 1$	2.003 8493 1	5.024 8187 2	$9.718 \ 6559 \ 3$
1.9	$6.043\ 7211\ 1$	$2.319\ 8449\ 1$	6.393 8785 2	1.365 8904 2
2.0	$6.375\ 7665\ 1$	$2.642\ 7054\ 1$	$7.950\ 0074\ 2$	$1.863 \ 4938 \ 2$
2.1	$6.676 \ 9480 \ 1$	2.967 8510 1	$9.681 \ 9304 \ 2$	$2.475 \ 0869 \ 2$
2.2	$6.948\ 8041\ 1$	$3.291 \ 1951 \ 1$	$1.157 \ 3423 \ 1$	3.208 5176 2
2.3	$7.193 \ 3733 \ 1$	$3.609\ 2531\ 1$	1.360 4473 1	$4.068 \ 6367 \ 2$
2.4	$7.412 \ 9640 \ 1$	$3.919 \ 1900 \ 1$	1.575 2552 1	$5.057\ 0825\ 2$
2.5	$7.609 \ 9769 \ 1$	$4.218\ 8152\ 1$	$1.799 \ 3866 \ 1$	$6.172 \ 2852 \ 2$
2.6	7.786 7749 1	$4.506\ 5408\ 1$	2.030 4481 1	7.409 6681 2
2.7	$7.945\ 5973\ 1$	4.781 3142 1	2.266 1274 1	8.762 0072 2
2.8	8.088 5078 1	5.042 5383 1	2.504 2661 1	1.021 9899 1
2.9	8.217 3707 1	5.289 9882 1	2.742 9106 1	1.177 2288 1
3.0	8.333 8455 1	5.523 7312 1	2.980 3420 1	1.340 7006 1
3.1	8.439 3937 1	5.744 0547 1	3.215 0885 1	1.511 1282 1
3.2	8.535 2937 1	5.951 4041 1	3.445 9236 1	1.687 2206 1
3.3	8.622 6588 1	0.140 3318 1	3.671 8542 1	
3.4	8.702 4564 1	0.329 4009 1	3.892 1017 1	2.051 3884 1
3.0 2.6	8.775 5208 1	0.001 4290 1	4.100 0/8/ 1	2.237 1190 1 2.492 9640 1
3.0	8.842 0005 1	0.002 9142 1	4.313 3031 1	2.423 8049 I
0.1	8.904 3134 1	0.014 0004 1 6 057 0202 1	4.010 0002 1	2.010 0878 1
0.0 2.0	$8.901 \ 2200 \ 1$	0.937 0302 1 7 000 0199 1	4.700 8747 1	2.790 7070 1 2.081 2407 1
3.9	9.013 8075 1	7.090 9122 1	4.892 8790 1	2.981 3497 1
4.0	9.002 0000 1	7 225 2200 1	5 942 4600 1	0.100 0410 1 2 242 7060 1
4.1	9.107 0741 1	7.333 2309 1	5 408 2600 1	2 500 5000 1
4.4	9.149 0099 1	7 551 7739 1	5 566 2830 1	3.602.8885 1
4.0	9.188 7507 1	7 650 8072 1	5 717 7076 1	3 862 5649 1
4.4	9.220 2000 1 0.250 2502 1	7 744 2463 1	5 869 7581 1	1 020 3159 1
т.0 4 б	0 201 1152 1	7 832 4745 1	6 001 6694 1	4 100 0780 1
4 7	0 320 0507 1	7 915 8474 1	6 134 6560 1	4 348 4370 1
4 8	0 348 0583 1	7 994 6937 1	6 261 9770 1	4 501 6223 1
4 9	9 375 2603 1	8.069 3176 1	6.383 8670 1	4.650 4944 1
5.0	9,400,0000 1	8.140 0000 1	6.500 5600 1	4.795 0480 1
5.5				

M-function and the appropriate asymptotic series as above. At and above r = 3.3, the asymptotic series agrees to eight significant figures with the result from the *M*-function. The results are reported in Table IV. Values at n = 0 have been omitted, for they are simply the error function

(5)
$$T\left(1,\frac{1}{2},r\right) = 2\pi^{-1/2}\int_0^r e^{-y^2} dy$$

University of Waterloo Waterloo, Ontario, Canada

1. J. R. AIREY, "Report of the mathematical tables committee," Annual Report, British Association for the Advancement of Science, 1926.

2. B. C. CARLSON, "Self-energy and potential of an ellipsoidal charge distribution," Semi-Annual Summary Research Report in Physics, Iowa State University, January-June, 1959. 3. A. FLETCHER, J. C. P. MILLER, L. ROSENHEAD & L. J. COMRIE, An Index of Mathematical

Tables, Vol. I, II, 2nd ed., published for Scientific Computing Service, Ltd., London by Addison-Wesley, Reading, Mass., 1962. MR 26 #365a, b.
4. A. H. HEATLEY, "A short table of the Toronto function," Trans. Roy. Soc. Canada Sect.

4. A. H. HEATLEY, "A short table of the Toronto function," Trans. Roy. Soc. Canada Sect. III, v. 37, 1943, p. 13-29. MR 5, 245. 5. WILLIAM HORENSTEIN, "Tables of the confluent hypergeometric function F(n/2, 1/2; x)and related functions," Nat. Bur. Standards Appl. Math. Ser. No. 3, U. S. Government Print-ing Office, Washington, 1949. 6. A. D. MACDONALD, "Properties of the confluent hypergeometric function," J. Math. Phys., v. 28, 1949, p. 183-191. MR 11, 246. 7. A. D. MACDONALD, "Tables of the function $e^{-\alpha x/\gamma}M(\alpha; \gamma; z)$," Canad. J. Res. Sect. A v. 28, 1950, p. 175-179. MR 12, 207. 8. Tables of Whittaker functions, Rep. No. 8, Numerical Computation Bureau, Tsuneta Yano Memorial Society, Tokyo, 1954, MR 16, 175. 9. L. J. SLATER, Confluent Hypergeometric Functions, Cambridge Univ. Press. New York.

9. L. J. SLATER, Confluent Hypergeometric Functions, Cambridge Univ. Press, New York, 1960. MR 21, 5753.

10. A. WAGNER, "Theorie der Boigheit und der Haufigkeitsverteilung von Windstärke und Windrichtung," Gerlands Beitrage zur Geophysik, v. 24, 1929-30, p. 386-436.

Tables of Values of σ_{24} Relating to Weierstrass' **Elliptic Function**

By Chih-Bing Ling

The coefficient σ_{2s} is defined by the double series

(1)
$$\sigma_{2s} = \sum_{m,n=-\infty}^{\infty} \frac{1}{(m+n\omega)^{2s}} \qquad (s \ge 2),$$

where the prime on the summation sign indicates the omission of simultaneous zeros of m and n; ω being a complex quantity. Such a coefficient occurs in the expansion of Weierstrass' elliptic function. Besides, it occurs also in the expansions of Weierstrass' Sigma and Zeta functions.

In two previous papers [1], [2], the author and his associate evaluated to 16D the Weierstrass' elliptic function at half periods and also the two coefficients σ_4 and σ_6 for the following two cases, namely: (i) when $\omega = ai$, and (ii) when $\omega = \frac{1}{2} + ci$. In the former case the primitive period-parallelogram is a rectangle and in the latter a rhombus. It appears that these two cases are the only cases in which σ_4 and σ_6 are both real.

Received July 10, 1964.